Antiandrogens
Aspirin
Bromhexine
Budesonide
Cannabidiol
Casirivimab/i..
Colchicine
Conv. Plasma
Curcumin
Diet
Ensovibep
Exercise
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Melatonin
Metformin
Molnupiravir
Nigella Sativa
Nitazoxanide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Proxalutamide
Quercetin
Remdesivir
Sleep
Sotrovimab
Vitamin A
Vitamin C
Vitamin D
Zinc

Other
Feedback Home
Home   COVID-19 treatment studies for Hydroxychloroquine  COVID-19 treatment studies for HCQ  C19 studies: HCQ  HCQ   Select treatmentSelect treatmentTreatmentsTreatments
Antiandrogens (meta) Lactoferrin (meta)
Aspirin (meta) Melatonin (meta)
Bamlaniv../e.. (meta) Metformin (meta)
Bebtelovimab (meta) Molnupiravir (meta)
Bromhexine (meta) N-acetylcys.. (meta)
Budesonide (meta) Nigella Sativa (meta)
Cannabidiol (meta) Nitazoxanide (meta)
Casirivimab/i.. (meta) Paxlovid (meta)
Colchicine (meta) Peg.. Lambda (meta)
Conv. Plasma (meta) Povidone-Iod.. (meta)
Curcumin (meta) Probiotics (meta)
Diet (meta) Proxalutamide (meta)
Ensitrelvir (meta) Quercetin (meta)
Ensovibep (meta) Remdesivir (meta)
Exercise (meta) Sleep (meta)
Famotidine (meta) Sotrovimab (meta)
Favipiravir (meta) Tixagev../c.. (meta)
Fluvoxamine (meta) Vitamin A (meta)
Hydroxychlor.. (meta) Vitamin C (meta)
Iota-carragee.. (meta) Vitamin D (meta)
Ivermectin (meta) Zinc (meta)

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent: 
Chloroquine does not inhibit infection of human lung cells with SARS-CoV-2
Hoffmann et al., Nature, (2020), doi:10.1038/s41586-020-2575-3 (In Vitro)
22 Jul 2020    Source   PDF   Share   Tweet
The title of this paper does not appear to match the results. Fig. 1b @100uM shows CQ results in a ~4.5 fold decrease (on a linear scale) in extracellular virus, p=0.05, after 24 hours (we do not see the supplementary data at this time so this is estimated from the graph). This decrease may continue if examined over longer time periods. Fig. 1a shows a ~45-50% entry inhibition @100uM for HCQ/CQ (p=0.0005/0.0045), ~10-30% @10uM (p=0.13/0.99). Inhibition is significantly better with Vero cells. Note that the safe concentration in practice for different cells is not well known, Keyaerts et al. find CC50 of 261uM [Keyaerts].
In vitro study of CQ and HCQ inhibition of SARS-CoV-2 into Vero (kidney), Vero-TMPRSS2, and Calu-3 (derived from human lung carcinoma) cells.
Authors reportedly used sodium pyruvate which may inhibit CQ from entering cells [twitter.com].
Although there are several theories on how HCQ may help with COVID-19, authors do not consider the most common theory where HCQ functions as a zinc ionophore, facilitating significant intracellular concentrations of zinc. Zinc is known to inhibit SARS-CoV RNA-dependent RNA polymerase activity, and is widely thought to be important for effectiveness with SARS-CoV-2 [infezmed.it].
Calu-3 is one of many cell lines derived from human lung carcinomas [journals.physiology.org]. Calu-3 cells resemble serous gland cells. They do not express 15-lipoxygenase, an enzyme specifically localized to the surface epithelium, but they do express secretory component, secretory leukocyte protease inhibitor, lysozyme, and lactoferrin, all markers of serous gland cells. [journals.physiology.org] note that the absence of systemic inflammation, circulatory factors, and other paracrine systemic influences is a potential limitation of the isolated cell system.
RT-PCR is used, we note that nucleic acid may persist even after the virus is no longer viable [fda.gov].
It is unclear how the authors conclude "CQ does not block SARS-CoV-2 infection of Calu-3" cells, when the results show statistically significant inhibition at higher concentrations.
Further, it is unclear how the authors go from these results in one specific type of pulmonary adenocarcinoma cells that resemble serous gland cells, in vitro, into the title of the paper which claims no inhibition in lung cells.
Further, it is unclear how another leap is made to "will not be effective against COVID-19" given the multiple theories of HCQ/CQ effectiveness.
Hoffmann et al., 7/22/2020, peer-reviewed, 10 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis
This PaperHCQAll
Please send us corrections, updates, or comments. Vaccines and treatments are both valuable and complementary. All practical, effective, and safe means should be used. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. Denying the efficacy of any method increases mortality, morbidity, collateral damage, and the risk of endemic status. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit