Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All HCQ studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19hcq.org COVID-19 treatment researchHCQHCQ (more..)
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19

Tai et al., Pharmaceutics, doi:10.3390/pharmaceutics13081260
Aug 2021  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
HCQ for COVID-19
1st treatment shown to reduce risk in March 2020
 
*, now known with p < 0.00000000001 from 422 studies, recognized in 42 countries.
No treatment is 100% effective. Protocols combine complementary and synergistic treatments. * >10% efficacy in meta analysis with ≥3 clinical studies.
4,000+ studies for 60+ treatments. c19hcq.org
Analysis of HCQ solutions suitable for nebulization for COVID-19.
Tai et al., 14 Aug 2021, peer-reviewed, 8 authors.
This PaperHCQAll
Nebulised Isotonic Hydroxychloroquine Aerosols for Potential Treatment of COVID-19
Waiting Tai, Michael Yee Tak Chow, Rachel Yoon Kyung Chang, Patricia Tang, Igor Gonda, Robert B Macarthur, Hak-Kim Chan, Philip Chi Lip Kwok
Pharmaceutics, doi:10.3390/pharmaceutics13081260
The coronavirus disease 2019 (COVID-19) is an unprecedented pandemic that has severely impacted global public health and the economy. Hydroxychloroquine administered orally to COVID-19 patients was ineffective, but its antiviral and anti-inflammatory actions were observed in vitro. The lack of efficacy in vivo could be due to the inefficiency of the oral route in attaining high drug concentration in the lungs. Delivering hydroxychloroquine by inhalation may be a promising alternative for direct targeting with minimal systemic exposure. This paper reports on the characterisation of isotonic, pH-neutral hydroxychloroquine sulphate (HCQS) solutions for nebulisation for COVID-19. They can be prepared, sterilised, and nebulised for testing as an investigational new drug for treating this infection. The 20, 50, and 100 mg/mL HCQS solutions were stable for at least 15 days without refrigeration when stored in darkness. They were atomised from Aerogen Solo Ultra vibrating mesh nebulisers (1 mL of each of the three concentrations and, in addition, 1.5 mL of 100 mg/mL) to form droplets having a median volumetric diameter of 4.3-5.2 µm, with about 50-60% of the aerosol by volume < 5 µm. The aerosol droplet size decreased (from 4.95 to 4.34 µm) with increasing drug concentration (from 20 to 100 mg/mL). As the drug concentration and liquid volume increased, the nebulisation duration increased from 3 to 11 min. The emitted doses ranged from 9.1 to 75.9 mg, depending on the concentration and volume nebulised. The HCQS solutions appear suitable for preclinical and clinical studies for potential COVID-19 treatment.
Conflicts of
References
Abu-Raddad, Chemaitelly, Butt, National Study Group for COVID-19 Vaccination. Effectiveness of the BNT162b2 Covid-19 vaccine against the B.1.1.7 and B.1.351 variants, N. Engl. J. Med, doi:10.1056/NEJMc2104974
Albariqi, Chang, Tai, Ke, Chow et al., Inhalable hydroxychloroquine powders for potential treatment of COVID-19, J. Aerosol Med. Pulm. Drug Deliv, doi:10.1089/jamp.2020.1648
Beasley, Rafferty, Holgate, Adverse reactions to the non-drug constituents of nebuliser solutions, Br. J. Clin. Pharmacol, doi:10.1111/j.1365-2125.1988.tb03305.x
Beck-Broichsitter, Oesterheld, Electrolyte type and nozzle composition affect the process of vibrating-membrane nebulization, Eur. J. Pharm. Biopharm, doi:10.1016/j.ejpb.2017.05.004
Bentur, Hutt, Brassil, Bäckman, Gonda et al., Phase 1 randomized placebo-controlled study in healthy adult volunteers to evaluate the safety, tolerability, and pharmacokinetics of orally inhaled aerosolized hydroxychloroquine sulfate-A potential treatment for COVID-19, J. Allergy Clin. Immunol, doi:10.1016/j.jaci.2020.12.011
Boregowda, Gandhi, Jain, Khanna, Gupta, Comprehensive literature review and evidence evaluation of experimental treatment in COVID 19 contagion, Clin. Med. Insights Circ. Respir. Pulm. Med, doi:10.1177/1179548420964140
Chan, Kwok, Young, Chan, Traini, Mannitol delivery by vibrating mesh nebulisation for enhancing mucociliary clearance, J. Pharm. Sci, doi:10.1002/jps.22494
Chan, Traini, Chan, Young, Kwok, Delivery of high solubility polyols by vibrating mesh nebulizer to enhance mucociliary clearance, J. Aerosol Med. Pulm. Drug Deliv, doi:10.1089/jamp.2011.0961
Chang, Kwok, Ghassabian, Brannan, Koskela et al., Cough as an adverse effect on inhalation pharmaceutical products, Br. J. Pharmacol, doi:10.1111/bph.15197
Charous, Nemeth, Serebriakov, Abraham, Aerosolized hydroxychloroquine (AHCQ) protects against antigeninduced early (EAR) and late airway responses (LAR) and airway hyperresponsiveness (AHR) in allergic sheep, Am. J. Respir. Crit. Care Med
Clark, The use of laser diffraction for the evaluation of the aerosol clouds generated by medical nebulizers, Int. J. Pharm, doi:10.1016/0378-5173(94)00255-4
Dauby, The unfinished story of hydroxychloroquine in COVID-19: The right anti-inflammatory dose at the right moment?, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.10.032
Daviskas, Gonda, Anderson, Mathematical modeling of heat and water transport in human respiratory tract, J. Appl. Physiol, doi:10.1152/jappl.1990.69.1.362
Dayton, Owen, Cipolla, Chu, Otulana et al., Development of an inhaled hydroxychloroquine sulfate product using the AERx ® system to treat asthma
De Reus, Hagedoorn, Sturkenboom, Grasmeijer, Bolhuis et al., Tolerability and pharmacokinetic evaluation of inhaled dry powder hydroxychloroquine in healthy volunteers, meDrxiv
Desager, Van Bever, Stevens, Osmolality and pH of anti-asthmatic drug solutions, Agents Actions, doi:10.1007/BF01997612
Fan, Zhang, Liu, Yang, Zheng et al., Connecting hydroxychloroquine in vitro antiviral activity to in vivo concentration for prediction of antiviral effect: A critical step in treating COVID-19 patients, Clin. Infect. Dis, doi:10.1093/cid/ciaa623
Fantini, Di Scala, Chahinian, Yahi, Structural and molecular modelling studies reveal a new mechanism of action of chloroquine and hydroxychloroquine against SARS-CoV-2 infection, Int. J. Antimicrob. Agents, doi:10.1016/j.ijantimicag.2020.105960
Fassihi, Nabar, Fassihi, Novel approach for low-dose pulmonary delivery of hydroxychloroquine in COVID-19, Br. J. Pharmacol, doi:10.1111/bph.15167
Fink, Ehrmann, Li, Dailey, Mckiernan et al., Reducing aerosol-related risk of transmission in the era of COVID-19: An interim guidance endorsed by the International Society of Aerosols in Medicine, J. Aerosol Med. Pulm. Drug Deliv, doi:10.1089/jamp.2020.1615
Finkbeiner, Charous, Dolganov, Widdicombe, Hydroxychloroquine (HCQ) inhibits rhinovirus (RV) replication in cultured human tracheal epithelial cells, J. Allergy Clin. Immunol, doi:10.1016/j.jaci.2004.01.416
Finlay, Stapleton, Undersizing of droplets from a vented nebulizer caused by aerosol heating during transit through an Andersen impactor, J. Aerosol Sci, doi:10.1016/S0021-8502(98)00024-X
Ghazanfari, Elhissi, Dong, Taylor, The influence of fluid physicochemical properties on vibrating-mesh nebulization, Int. J. Pharm, doi:10.1016/j.ijpharm.2007.02.035
Hinds, Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles
Iacobucci, Covid-19: Single vaccine dose is 33% effective against variant from India, data show, BMJ, doi:10.1136/bmj.n1346
Idkaidek, Hawari, Dodin, Obeidat, Development of a physiologically-based pharmacokinetic (PBPK) model of nebulized hydroxychloroquine for pulmonary delivery to COVID-19 patients, Drug Res
Izda, Jeffries, Sawalha, COVID-19: A review of therapeutic strategies and vaccine candidates, Clin. Immunol, doi:10.1016/j.clim.2020.108634
Jang, Choi, Byun, Jue, Chloroquine inhibits production of TNF-alpha, IL-1beta and IL-6 from lipopolysaccharide-stimulated human monocytes/macrophages by different modes, Rheumatology, doi:10.1093/rheumatology/kei282
Jordan, Brookes, Nikolic, Le Couteur, Hydroxychloroquine overdose: Toxicokinetics and management, Clin. Toxicol, doi:10.1081/CLT-100102466
Juul, Nielsen, Feinberg, Siddiqui, Jørgensen et al., Interventions for treatment of COVID-19: A living systematic review with meta-analyses and trial sequential analyses (The LIVING Project), PLoS Med, doi:10.1371/journal.pmed.1003293
Karlsson, Soveri, Lewandowsky, Karlsson, Karlsson et al., Fearing the disease or the vaccine: The case of COVID-19, Personal. Individ. Differ, doi:10.1016/j.paid.2020.110590
Karnad, Mhaisekar, Moralwar, Respiratory mucus pH in tracheostomized intensive care unit patients: Effects of colonization and pneumonia, Crit. Care Med, doi:10.1097/00003246-199007000-00003
Kaur, Kaushal, Kaushal, Therapeutic status of hydroxychloroquine in COVID-19: A review, J. Anaesthesiol. Clin. Pharmacol
Klimke, Hefner, Will, Voss, Hydroxychloroquine as an aerosol might markedly reduce and even prevent severe clinical symptoms after SARS-CoV-2 infection, Med. Hypotheses, doi:10.1016/j.mehy.2020.109783
Kostoff, Briggs, Porter, Spandidos, Tsatsakis, COVID-19 vaccine safety, Int. J. Mol. Med
Krammer, SARS-CoV-2 vaccines in development, Nature, doi:10.1038/s41586-020-2798-3
Kwong, Ho, Coates, Comparison of nebulized particle size distribution with Malvern laser diffraction analyzer versus Andersen cascade impactor and low-flow Marple personal cascade impactor, J. Aerosol Med, doi:10.1089/jam.2000.13.303
Lammers, Brohet, Theunissen, Koster, Rood et al., Early hydroxychloroquine but not chloroquine use reduces ICU admission in COVID-19 patients, Int. J. Infect. Dis, doi:10.1016/j.ijid.2020.09.1460
Lin, Chen, Fink, Lee, Huang et al., In vitro evaluation of a vibrating-mesh nebulizer repeatedly use over 28 days, Pharmaceutics, doi:10.3390/pharmaceutics12100971
Liu, Cao, Xu, Wang, Zhang et al., Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro, Cell Discov, doi:10.1038/s41421-020-0156-0
Luchsinger, Hillyer, Vaccine efficacy probable against COVID-19 variants, Science
Madhi, Baillie, Cutland, Voysey, Koen et al., Efficacy of the ChAdOx1 nCoV-19 Covid-19 vaccine against the B.1.351 variant, N. Engl. J. Med, doi:10.1056/NEJMoa2102214
Maisonnasse, Guedj, Contreras, Behillil, Solas et al., Hydroxychloroquine use against SARS-CoV-2 infection in non-human primates, Nature, doi:10.1038/s41586-020-2558-4
Majumder, Minko, Recent developments on therapeutic and diagnostic approaches for COVID-19, AAPS J, doi:10.1208/s12248-020-00532-2
Martindale, The Complete Drug Reference
Mitchell, Berlinski, Canisius, Cipolla, Dolovich et al., Urgent appeal from International Society for Aerosols in Medicine (ISAM) during COVID-19: Clinical decision makers and governmental agencies should consider the inhaled route of administration: A statement from the ISAM Regulatory and Standardization Issues Networking Group, J. Aerosol. Med. Pulm. Drug Deliv
Moffat, Osselton, Widdop, Clarke's Analysis of Drugs and Poisons
Morris, Tisi, Tan, Worthington, Development and palatability assessment of Norvir ® (ritonavir) 100 mg powder for pediatric population, Int. J. Mol. Sci, doi:10.3390/ijms20071718
Ng, Bidani, Heming, Innate host defense of the lung: Effects of lung-lining fluid pH, Lung, doi:10.1007/s00408-004-2511-6
Pastick, Okafor, Wang, Lofgren, Skipper et al., Review: Hydroxychloroquine and chloroquine for treatment of SARS-CoV-2 (COVID-19), Open Forum Infect. Dis, doi:10.1093/ofid/ofaa130
Pauli, Joshi, Vasavada, Brackett, Towa, Evaluation of an immediate-release formulation of hydroxychloroquine sulfate with an interwoven pediatric taste-masking system, J. Pharm. Sci, doi:10.1016/j.xphs.2019.12.014
Peiris, Leung, What can we expect from first-generation COVID-19 vaccines?, Lancet, doi:10.1016/S0140-6736(20)31976-0
Phipps, Gonda, Droplets produced by medical nebulizers: Some factors affecting their size and solute concentration, Chest, doi:10.1378/chest.97.6.1327
Phipps, Gonda, Evaporation of aqueous aerosols produced by jet nebulizers: Effects on particle size and concentration of solution in the droplets, J. Aerosol Med, doi:10.1089/jam.1994.7.239
Romagnoli, Peris, De Gaudio, Geppetti, SARS-CoV-2 and COVID-19: From the Bench to the Bedside, Physiol. Rev, doi:10.1152/physrev.00020.2020
Schuster, Cipolla, Farr, Processes for Taste-Masking of Inhaled Formulations, U.S. Patent Application
Siemieniuk, Bartoszko, Ge, Zeraatkar, Izcovich et al., Drug treatments for covid-19: Living systematic review and network meta-analysis, BMJ, doi:10.1136/bmj.m2980
Soares, Sousa, Pais, Vitorino, Nanomedicine: Principles, properties, and regulatory Issues, Front. Chem, doi:10.3389/fchem.2018.00360
Sperber, Quraishi, Kalb, Panja, Stecher et al., Selective regulation of cytokine secretion by hydroxychloroquine: Inhibition of interleukin 1 alpha (IL-1-alpha) and IL-6 in human monocytes and T cells, J. Rheumatol
Sun, Wang, Cai, Hu, Chen et al., Cytokine storm intervention in the early stages of COVID-19 pneumonia, Cytokine Growth Factor Rev, doi:10.1016/j.cytogfr.2020.04.002
Tabish, Hamblin, Multivalent nanomedicines to treat COVID-19: A slow train coming, Nano Today, doi:10.1016/j.nantod.2020.100962
Tai, Wu, Wu, Tsai, Wang et al., A strategy to treat COVID-19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study, Clin. Transl. Sci, doi:10.1111/cts.12923
Taylor, None
Tett, Cutler, Day, Brown, A dose-ranging study of the pharmacokinetics of hydroxy-chloroquine following intravenous administration to healthy volunteers, Br. J. Clin. Pharmacol, doi:10.1111/j.1365-2125.1988.tb05281.x
Tett, Cutler, Day, Brown, Bioavailability of hydroxychloroquine tablets in healthy volunteers, Br. J. Clin. Pharmacol, doi:10.1111/j.1365-2125.1989.tb03439.x
Wang, Cao, Zhang, Yang, Liu et al., Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro, Cell Res, doi:10.1038/s41422-020-0282-0
Warhurst, Steele, Adagu, Craig, Cullander, Hydroxychloroquine is much less active than chloroquine against chloroquine-resistant Plasmodium falciparum, in agreement with its physicochemical properties, J. Antimicrob. Chemother, doi:10.1093/jac/dkg319
Weers, Inhaled antimicrobial therapy-Barriers to effective treatment, Adv. Drug Deliv. Rev, doi:10.1016/j.addr.2014.08.013
Wise, Covid-19: The E484K mutation and the risks it poses, BMJ, doi:10.1136/bmj.n359
Yahya, Mcelnay, D'arcy, Binding of chloroquine to glass, Int. J. Pharm, doi:10.1016/0378-5173(85)90095-X
Yahya, Mcelnay, D'arcy, Investigation of chloroquine binding to plastic materials, Int. J. Pharm, doi:10.1016/0378-5173(86)90020-7
Yao, Ye, Zhang, Cui, Huang et al., In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Clin. Infect. Dis, doi:10.1093/cid/ciaa237
Zander, Intrakranieller Druck und hypotone Infusionslösungen (Intracranial pressure and hypotonic infusion solutions), Anaesthesist, doi:10.1007/s00101-009-1524-1
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit